## Math 2450: Lines and Planes in $\mathbb{R}^{3}$

What is a line in $\mathbb{R}^{3}$ ? Previously, we explored lines in two-dimensions $\left(\mathbb{R}^{2}\right)$, using a point on the line $\left(x_{1}, y_{1}\right)$ and slope $m=\frac{b}{a}$. Recall the slope-intercept form of a line:

$$
y=m x+b
$$

We can think of slope as a direction $\langle a, b\rangle$, where $a$ is the change in $x$ and $b$ is the change in $y$. The direction can be represented as the vector $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$. But how do we express lines in three-dimensions $\left(\mathbb{R}^{3}\right)$ ? We now have 3 variables $(x, y, z)$, so our direction vector is of the form $\mathbf{v}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$. Below is the formal definition of the parametric form of a line in $\mathbb{R}^{3}$ :

Parametric Form of a Line in $\mathbb{R}^{3}$ : If $L$ is a line that contains the point ( $x_{0}, y_{0}, z_{0}$ ) and is aligned with $\mathbf{v}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$, then the point $(x, y, z)$ is on $L$ if and only if its coordinates satisfy:

$$
\begin{gathered}
x-x_{0}=t A \quad y-y_{0}=t B \quad z-z_{0}=t C \\
\text { or } \\
\langle x, y, z\rangle=\left\langle x_{0}+A t, y_{0}+B t, z_{0}+C t\right\rangle
\end{gathered}
$$

If $A, B, C \neq 0$, we may rearrange the equations above to obtain the symmetric equations for a line:

$$
\frac{x-x_{0}}{A}=\frac{y-y_{0}}{B}=\frac{z-z_{0}}{C}
$$

Note: In this case, $\langle A, B, C\rangle$ is parallel with the line.
What is a plane in $\mathbb{R}^{3}$ ? A plane is a two-dimensional surface in three-dimensional space. The equation of a plane may be expressed two different ways:

- Point-normal form: $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)+D=0$
- Standard form: $A x+B y+C z+D=0$ for some constants $A, B, C, D$

In the point-normal form of a plane, $\left(x_{0}, y_{0}, z_{0}\right)$ is a point contained in the plane and $\mathbf{N}=\langle A, B, C\rangle$ is the normal vector that is orthogonal to every vector in the plane. Remember that orthogonal vectors have a dot product of 0 . Standard form is a simplification of point-normal form.
Why are lines and planes in $\mathbb{R}^{3}$ important? Lines and planes in $\mathbb{R}^{3}$ are the foundation for working with all other surfaces and shapes in three-dimensional space. Planes are two-dimensional and contain infinitely many lines, whereas lines are one-dimensional and contain infinitely many points. Lines in $\mathbb{R}^{2}(y=m x+b)$ describe planes in $\mathbb{R}^{3}$, therefore, it is important to understand the definition of a line specific to $\mathbb{R}^{3}$. Consider the walls of a room:


Note that the room is made up of planes. The intersection of the planes creates a line. These are the building blocks of three-dimensional shapes that we will explore throughout the course.

Example 1. Find the parametric equations for the line that contains the point $(1,2,3)$ and is aligned with the vector $\mathbf{v}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$. Find where this line passes through the coordinate planes.

Solution: From the given vector $\mathbf{v}$, we see that $A=2, B=1$, and $C=-1$. Since the point $(1,2,3)$ is contained on the line, we have that $x_{0}=1, y_{0}=2, z_{0}=3$.
Now using the definition of the parametric form of a line in $\mathbb{R}^{3}$ (provided above), we get the line:

| $x-1=2 t$ | $y-2=1 t$ | $z-3=-1 t$ |
| :---: | :---: | :---: |
| $x=1+2 t$ | $y=2+t$ | $z=3-t$ |

To find where our line passes through (or intersects) the coordinate planes, we first need to understand what it means for a line in $\mathbb{R}^{3}$ to intersect a plane. Consider the $x y$-plane: it is twodimensional and does not have a $z$-coordinate. Therefore, in the $x y$-plane, $z=0$. So, for our line, when we let $z=0$ :

$$
\begin{array}{rll}
z=3-t & \rightarrow \quad 0=3-t \quad[z=0] \\
& \rightarrow \quad t=3
\end{array}
$$

We get that the value $t=3$. Using this we find the values of $x$ and $y$ at the point of intersection with the $x y$-plane:

The point of intersection is $(7,5,0)$. A similar process is followed to find the intersection of our line with the $y z$-plane $(\operatorname{set} x=0)$ and $x z$-plane $(\operatorname{set} y=0)$. Check the points of intersection of the line:

- with the $y z$-plane: $\left(0, \frac{3}{2}, \frac{5}{2}\right)$
- with the $x z$-plane: $(-3,0,5)$

Example 2. Find a vector $\mathbf{v}$ in the same direction of the line given below:

$$
x=6-2 t \quad y=1+t \quad z=3 t
$$

Solution: Using the definition of the parametric form of a line in $\mathbb{R}^{3}$, the vector $\langle A, B, C\rangle$ that is parallel to the given line is the coefficients of the $t$ terms:

$$
A=-2 \quad B=1 \quad C=3
$$

Therefore, a vector in the same direction of the given line is:

$$
\mathbf{v}=\langle-2,1,3\rangle
$$

Example 3. Find normal vectors to the planes

1. $-x+4 y=3$
2. $0.6 x+y-2.3 z=10$
3. $3 y-2 z=1$
[Solution: $\mathbf{N}=\langle-1,4,0\rangle$ ]
[Solution: $\mathbf{N}=\langle 0.6,1,-2.3\rangle$ ]
[Solution: $\mathbf{N}=\langle 0,3,-2\rangle]$

## Practice Problems

1. Find the parametric equations for the line that contains the point $(-2,3,5)$ and is aligned with the vector $\mathbf{v}=\langle 4,-1,7\rangle$. Find where the line intersects the $x z$-plane.
[Solution: Line: $x=-2+4 t \quad y=3-t \quad z=5+7 t$ and point of intersection: $(10,0,26)$ ]
2. Find a vector in the same direction of the line: $\langle 5+t, 3-7 t, 2-4 t\rangle$
[Solution: $\mathbf{v}=1 \mathbf{i}-7 \mathbf{j}-4 \mathbf{k}]$
