## Math 2450: Lines and Planes in $\mathbb{R}^3$

What is a line in  $\mathbb{R}^3$ ? Previously, we explored lines in two-dimensions ( $\mathbb{R}^2$ ), using a point on the line  $(x_1, y_1)$  and slope  $m = \frac{b}{a}$ . Recall the slope-intercept form of a line:

$$y = mx + b$$

We can think of slope as a direction  $\langle a, b \rangle$ , where a is the change in x and b is the change in y. The direction can be represented as the vector  $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$ . But how do we express lines in three-dimensions ( $\mathbb{R}^3$ )? We now have 3 variables (x, y, z), so our direction vector is of the form  $\mathbf{v} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$ . Below is the formal definition of the parametric form of a line in  $\mathbb{R}^3$ :

Parametric Form of a Line in  $\mathbb{R}^3$ : If L is a line that contains the point  $(x_0, y_0, z_0)$  and is aligned with  $\mathbf{v} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$ , then the point (x, y, z) is on L if and only if its coordinates satisfy:

$$x - x_0 = tA$$
  $y - y_0 = tB$   $z - z_0 = tC$ 

or
$$\langle x, y, z \rangle = \langle x_0 + At, y_0 + Bt, z_0 + Ct \rangle$$

If  $A, B, C \neq 0$ , we may rearrange the equations above to obtain the **symmetric** 

equations for a line:

$$\frac{x-x_0}{A} = \frac{y-y_0}{B} = \frac{z-z_0}{C}$$

**Note:** In this case,  $\langle A, B, C \rangle$  is parallel with the line.

What is a plane in  $\mathbb{R}^3$ ? A plane is a two-dimensional surface in three-dimensional space. The equation of a plane may be expressed two different ways:

- Point-normal form:  $A(x-x_0) + B(y-y_0) + C(z-z_0) + D = 0$
- Standard form: Ax + By + Cz + D = 0 for some constants A, B, C, D

In the point-normal form of a plane,  $(x_0, y_0, z_0)$  is a point contained in the plane and  $\mathbf{N} = \langle A, B, C \rangle$  is the normal vector that is orthogonal to every vector in the plane. Remember that orthogonal vectors have a dot product of 0. Standard form is a simplification of point-normal form.

Why are lines and planes in  $\mathbb{R}^3$  important? Lines and planes in  $\mathbb{R}^3$  are the foundation for working with all other surfaces and shapes in three-dimensional space. Planes are two-dimensional and contain infinitely many lines, whereas lines are one-dimensional and contain infinitely many points. Lines in  $\mathbb{R}^2$  (y = mx + b) describe planes in  $\mathbb{R}^3$ , therefore, it is important to understand the definition of a line specific to  $\mathbb{R}^3$ . Consider the walls of a room:



Note that the room is made up of planes. The intersection of the planes creates a line. These are the building blocks of three-dimensional shapes that we will explore throughout the course.

**Example 1.** Find the parametric equations for the line that contains the point (1,2,3) and is aligned with the vector  $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$ . Find where this line passes through the coordinate planes.

**Solution:** From the given vector  $\mathbf{v}$ , we see that A=2, B=1, and C=-1. Since the point (1,2,3) is contained on the line, we have that  $x_0=1, y_0=2, z_0=3$ .

Now using the definition of the parametric form of a line in  $\mathbb{R}^3$  (provided above), we get the line:

$$x-1 = 2t$$
  $y-2 = 1t$   $z-3 = -1t$   $x = 1 + 2t$   $y = 2 + t$   $z = 3 - t$ 

To find where our line passes through (or intersects) the coordinate planes, we first need to understand what it means for a line in  $\mathbb{R}^3$  to intersect a plane. Consider the xy-plane: it is two-dimensional and does not have a z-coordinate. Therefore, in the xy-plane, z=0. So, for our line, when we let z=0:

We get that the value t = 3. Using this we find the values of x and y at the point of intersection with the xy-plane:

$$x = 1 + 2t$$
  $\rightarrow$   $x = 1 + 2(3)$   $[t = 3]$   $y = 2 + t$   $\rightarrow$   $y = 2 + 3$   $[t = 3]$   $y = 5$ 

The point of intersection is (7,5,0). A similar process is followed to find the intersection of our line with the yz-plane (set x=0) and xz-plane (set y=0). Check the points of intersection of the line:

- with the yz-plane:  $(0, \frac{3}{2}, \frac{5}{2})$
- with the xz-plane:(-3,0,5)

**Example 2.** Find a vector  $\mathbf{v}$  in the same direction of the line given below:

$$x = 6 - 2t \qquad y = 1 + t \qquad z = 3t$$

**Solution:** Using the definition of the parametric form of a line in  $\mathbb{R}^3$ , the vector  $\langle A, B, C \rangle$  that is parallel to the given line is the coefficients of the t terms:

$$A = -2$$
  $B = 1$   $C = 3$ 

Therefore, a vector in the same direction of the given line is:

$$\mathbf{v} = \langle -2, 1, 3 \rangle$$

Example 3. Find normal vectors to the planes

- 1. -x + 4y = 3 [Solution:  $\mathbf{N} = \langle -1, 4, 0 \rangle$ ]
- 2. 0.6x + y 2.3z = 10 [Solution:  $\mathbf{N} = \langle 0.6, 1, -2.3 \rangle$ ]
- 3. 3y 2z = 1 [Solution: N = (0, 3, -2)]

## **Practice Problems**

1. Find the parametric equations for the line that contains the point (-2,3,5) and is aligned with the vector  $\mathbf{v} = \langle 4, -1, 7 \rangle$ . Find where the line intersects the xz-plane.

[Solution: Line: x = -2 + 4t y = 3 - t z = 5 + 7t and point of intersection: (10, 0, 26)]

2. Find a vector in the same direction of the line:  $\langle 5+t, 3-7t, 2-4t \rangle$ 

[Solution:  $\mathbf{v} = 1\mathbf{i} - 7\mathbf{j} - 4\mathbf{k}$ ]